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Abstract 
 
This paper describes the PAQ1 lossless data compression program.  PAQ1 is an arithmetic encoder using a weighted 
average of five bit-level predictors.  The five models are: (1) a bland model with 0 or 1 equally likely, (2) a set of 
order-1 through 8 nonstationary n-gram models, (3) a string matching model for n-grams longer than 8, (4) a 
nonstationary word unigram and bigram model for English text, and (5) a positional context model for data with 
fixed length records.  Probabiliti es are weighted roughly by n2/tp(0)p(1) where n is the context length, t is the age of 
the training data (number of subsequent events), and p(0) and p(1) are the probabiliti es of a 0 or 1 (favoring long 
runs of zeros or ones).  The aging of training statistics makes the model nonstationary, which gives excellent 
compression for mixed data types.  PAQ1 compresses the concatenated Calgary corpus to 1.824 bits per character, 
which is 4.5% better than RK (Taylor, 1999) and 2.9% better than PPMONSTR (Shkarin, 2001), the top programs 
rated by Gilchrist (2001) and Ratushnyak (2001) respectively, although those programs do slightly better on 
homogeneous data. 
 

1. Introduction 
 
The best general purpose lossless compression algorithms are prediction by partial match, or PPM (Bell , Witten, and 
Cleary, 1989) and the Burrows-Wheeler transform, or BWT (Burrows and Wheeler, 1994).  These are both 
stationary models, in the sense that the statistics used to estimate the probabilit y (and therefore the code length) of a 
symbol are independent of the age of the training data.  However, many types of data are nonstationary, in that newer 
statistics are more reliable.  This can be shown by plotting the probabilit y of matching two randomly chosen n-grams 
(sequences of n characters) as a function of t, the distance between them.  Table 1 shows the result for Thomas 
Hardy’s Far from the Madding Crowd, which is also book1 from the Calgary corpus (Bell , Witten, and Cleary, 
1989).  Probabiliti es for the 768,771 byte file were estimated for each t by sampling one milli on random pairs 
separated by t plus or minus 10%. 
 
n  t = 1     10    100   1000    104    105 

1  2.133  6.450  6.500  6.427  6.411  6.403 
2  0.027  0.650  0.734  0.701  0.691  0.689 
3  0.016  0.129  0.193  0.166  0.161  0.157 
4  0.013  0.045  0.078  0.063  0.056  0.056 
5  0.012  0.017  0.037  0.025  0.021  0.021 
6  0.011  0.010  0.017  0.011  0.007  0.006 
 
Table 1.  Percent probabilit y of matching n consecutive characters separated by t in Far from the Madding Crowd. 
 
The peak at around t = 100 is peculiar to natural language text, and is due to the tendency of words not to repeat in 
close proximity, as in the the.  The long range drop off f rom 100 and 105 is due to the cache effect (Clarkson and 
Robinson, 1997), the tendency of words to be used in topic-specific contexts confined to a portion of the text.  This 
effect can be used to improve compression by assigning higher probabiliti es (and shorter codes) to words that have 
already appeared recently. 
 
The cache effect can be observed in all kinds of data, not just text.  For example, the effect can be seen in the DNA 
sequence E.coli from the Canterbury corpus (Arnold and Bell , 1997) large file collection in Table 2.  The file 
consists of 4,638,690 bytes from the alphabet a, t, c, and g. 
 



 

 

n  t = 1     10    100   1000    104    105    106 

1 26.263 25.840 25.481 25.183 25.025 25.035 24.989 
2  6.760  6.978  6.739  6.541  6.429  6.429  6.355 
3  1.903  1.971  1.832  1.719  1.692  1.663  1.677 
4  0.566  0.564  0.513  0.461  0.453  0.438  0.441 
5  0.146  0.164  0.151  0.124  0.124  0.118  0.116 
6  0.030  0.047  0.045  0.034  0.032  0.032  0.033 
 
Table 2.  Percent probabil ity of matching n consecutive DNA nucleotides separated by t in E.coli . 
 
The cache effect can be found in 13 of 14 files in the Calgary corpus (all except bib) and in 13 of 14 files in the 
Canterbury corpus regular and large file sets (all except kennedy.xls).  Yet neither of the best algorithms, PPM or 
BWT exploit this effect.  For example, if the input to be compressed is 
 
              ...can...can...can...cat...cat                                                                                                                    (1) 
 
then to code the t at the end of the string, PPM would estimate its probabilit y by counting characters in matching 
contexts (ca) with equal weight, regardless of their age.  In this example, t occurred previously 1 out of 4 times in 
context ca, so that the next t would be assigned a code approximately -log2 1/4 = 2 bits long (neglecting for the 
moment the possibilit y of novel characters, such as car). 
 
A BWT compressor sorts the input characters by their contexts prior to compression.  For instance, context-sorting 
(1) might produce the sequence tnntn because they are all preceded by ca, and sorting brings them together.  The 
exact order depends on the preceding characters (before the ca), and not on their original order, so the model is 
stationary regardless of the compression algorithm used on the transformed input. 
 
Gilchrist’s (2001) Archive Comparison Test (ACT) ranks 165 PC and Macintosh based compression programs 
(including different versions) on various test sets including the 18 file version of the Calgary corpus (adding four 
small text files, paper3 through paper6).  The top ranked programs as of July, 2001, from best to worst, are RK 
1.02b5 (Taylor, 1999), RK 1.04 (Taylor, 2000), SBC 0.910 (Mäkinen, 2001), BOA 0.58b (Sutton, 1998), and ACB 
2.00c (Buyanovsky, 1997).  Ratushnyak (2001) ranked a smaller number of programs on the Canterbury corpus, and 
found the top three programs as of mid 2001 to be PPMONSTR var. H, PPMD var. H (Shkarin, 2001, 2002), and 
RK 1.02b5.  All of these programs give 30-40% better compression than popular programs such as COMPRESS 
(1990), PKZIP (1993), or GZIP (Gaill y, 1993), although they are slower and use more memory. 
 
SBC is a BWT compressor.  All of the others use PPM (except ACB, which uses associative coding).  The PPM 
programs differ in how they compute the probabilit y of novel characters.  RK and BOA are based on PPMZ (Bloom, 
1998).  PPMZ uses an adaptive second level model to estimate the optimum value as a function of the order, the total 
character count, number of unique characters, and the last one or two bytes of context.  RK also models certain 
contexts to improve compression on certain types of data including ASCII text, executables, and 8, 16, and 32 bit 
numeric data.  RK and BOA both produces solid archives, using the statistics from one file to improve compression 
on another.  They perform an analysis to determine the optimal ordering prior to compression. 
 
PPMD and PPMONSTR are based on PPMII , or PPM with information inheritance (Shkarin 2002).   PPMII , like 
PPMZ, uses  a secondary escape model.  Unlike PPMZ and most other PPM models, which uses statistics from the 
longest matching context, PPMII inherits the statistics of shorter contexts to set the initial estimate when a longer 
context is encountered for the first time.  This has the effect of including statistics from contexts shorter than the 
longest match.  PPMONSTR is a variation of PPMD that gives better compression at the cost of execution speed.  
The maximum order (longest possible context) is 16 for PPMD and 64 for PPMONSTR. 
 
ACB uses associative coding.  The input is sorted by context, as in BWT, but instead of compressing the transform, 
the context-sorted data is used to build a permuted index (but sorted reading backwards) which grows as data is read 
in.  Suppose that the input string is cx, where c is the part already encoded (the context), and x is the remaining input.  
To encode x, we look up both c and x in the permuted index, matching as many characters as possible of c reading 
left and x reading right.  Often, the best two matches are at the same place in the index, or separated by some small 



 

 

distance, L.  Suppose the best match reading to the right is n characters, x0x1...xn-1.  Then we encode the next n + 1 
characters x0x1...xn as the triple (L, n, xn).  Associative coding is stationary because the context sorting loses the 
relative position of the context, as with BWT. 
 
Popular, fast compression programs such as COMPRESS, PKZIP, and GZIP use Ziv-Lempel (LZ) compression 
(Bell, Witten, and Cleary, 1989).  In the LZ77 variant (used by GZIP), strings that occur more than once are replaced 
with pointers (offset and length) to previous occurrences.  This exploits the cache effect because closer strings can be 
encoded using fewer bits for the offset, corresponding to a higher probability.  However, LZ77 wastes code space 
whenever a string could be coded in more than one way.  For example, the third occurrence of can in (1) could be 
coded as a pointer to either the first or the second occurrence, and we need some space to encode this arbitrary 
choice.  LZ78 (used by COMPRESS) eliminates this redundancy by building a dictionary and coding repeat strings 
as pointers to dictionary entries.  (Thus, it is stationary).  This does not entirely eliminate redundancy because we 
could still find more than one encoding by choosing different token boundaries.  For instance, we could encode can 
using three pointers to three one-character entries.  Although COMPRESS, PKZIP, and GZIP compression is 
relatively poor, part of the reason is that they sacrifice compression for speed and memory economy.  (ACB also 
codes redundantly, but still achieves good compression).  The top compressors use large amounts of memory (16-64 
MB or more) and are many times slower. 
 
The rest of this paper is organized as follows.  In section 2, we describe the architecture of the PAQ1 archiver, a bit-
level predictor using a weighted combination of models and an arithmetic encoder.  In sections 3 through 6, we 
describe four model components: a nonstationary order-8 n-gram model, a long string matcher for n > 8, a word 
bigram model for English ASCII text, and a fixed length record model.  In section 7, we compare PAQ1 with top 
ranked compression programs.   In section 8, we isolate the effects of the PAQ1 components.  In section 9, we 
summarize and suggest future directions. 
 

2.  The PAQ1 Architecture 
 
PAQ1 is a predictive arithmetic encoder, like PPM, except that it uses a binary alphabet to simplify encoding and 
model merging.  The idea is to encode an input string s as a binary number x such that for any randomly chosen 
string r, 
 
              p(r < s) ≤ x < p(r ≤ s)                                                                                                                            (2) 
 
assuming some ordering over the strings.  The range of x satisfying (2) has magnitude p(s), thus we can always 
encode a number that satisfies the inequality with at most log2 p(s) + 1 bits, which is within one bit of the Shannon 
limit (Shannon and Weaver, 1949).   
 
Howard and Viller (1992) describe efficient methods for encoding x in O(|s|) time, where |s| is the length of s in bits.  
The method used by PAQ1 is to estimate p(s) one bit at a time as the product of the conditional probabilities 
p(s1)p(s2|s1)p(s3|s1s2)...p(sn|s1s2s3...sn-1).  We keep track of the range of x satisfying (2), initially [0,1), and as each bit 
is predicted, we divide the range into two parts in proportion to p(0) and p(1).  Then when the bit is input, we the 
corresponding segment becomes the new range.  When the range becomes sufficiently narrow that the leading base-
256 digits become known (because they are the same for the lower and upper bound), then they are output.  The 
point where the range is split is rounded so that only 4 digits (32 bits) of the bounds need to be kept in memory.  In 
practice, this rounding adds less than 0.0002 bits per character to the compressed output. 
 
The advantage of using bit prediction is that it allows models that specialize in different types of data to be integrated 
by using a weighted combination of their predictions.  In PAQ1 there are five models, each outputting a probability 
and a confidence.  This is represented as a pair of non-negative counts, c0 and c1, which expresses the idea that the 
probability that the next bit will be a 1 is p(1) = c1/c with confidence (weight) c, where c = c0 + c1.  Equivalently, it 
represents a set of c independent experiments in which 0 occurred c0 times and 1 occurred c1 times.  The models are 
combined simply by adding their counts, i.e. p(1) = Σ c1 / Σ c with the summation over the models. 
 
Because it is possible to have p(1) = 0 or p(1) = 1, which would imply an infinitely long code if the opposite bit 



 

 

actually occurs, we include a bland model to ensure that this does not happen.  The bland model is c0 = 1 and c1 = 1, 
which expresses p(1) = 1/2 with confidence 2.  The bland model by itself neither compresses nor expands the input. 
 

3.  The Nonstationary n-gram Model 
 
PAQ1 guesses the next bit of input by finding a sequence of matching contexts in the input and recording the 
sequence of bits that followed.  An n-gram model, with n = 1 through 8, consists of the previous n - 1 whole bytes of 
context, plus the 0 to 7 bits of the partially read byte.  For example, suppose we wish to estimate p(1) for the fourth 
bit of the final t in cat in (1).  The 3-gram context is ca,011, consisting of the last n - 1 = 2 whole characters, plus the 
bits read so far.  This context occurs four times prior to the current occurrence (both n and t begin with the bits 011).  
In the first three occurrences (can), the next bit is 0.  In the fourth (cat), the next bit is 1.  Thus, the next-bit history in 
this context is 0001. 
 
The next question is what to do with this history.  As mentioned, PPM, BWT, and associative coding models would 
assume that the outcomes are stationary and independent, and weight all bits equally for p(1) = 1/4.  However, from 
section 1 we saw that the most recent data ought to be given greater weight.  Some possibilities are: 
 

� Temporal bigram model.  Each event is considered in the context of the previous event.  Since no events have 
yet occurred in the context 1, p(1) = 0.5. 

� Inverse reaction model.  Only the last occurrence of each event is counted, with weight 1/t, where t is the age.  
The age of the last 1 is 1, and the age of the last 0 is 2.  Thus, p(1) = 1/(1 + 1/2) = 0.67. 

� Inverse temporal model.  Each event with age t is weighted by 1/t, or 1/4, 1/3, 1/2, 1.  Thus, p(1) = 1/(1/4 + 1/3 
+ 1/2 + 1) = 0.48 

 
These models require different amounts of state information to be kept by the source.  A stationary, independent 
source is stateless.  A temporal bigram model requires one bit of state information to save the last bit.  An inverse 
reaction model requires saving not only the last event, but also the number of times in a row that it occurred.  An 
inverse temporal model is the most complex.  It must save a complete history so that each event weight can be 
discounted by 1/t after time t.  This model is not stationary because it requires unbounded memory, although it can 
be approximated by a sum of exponentially decaying counts over a wide range of decay rates. 
 
There is evidence that the brains of animals may use an inverse temporal model or inverse reaction model.  Classical 
conditioning and reinforcement learning are consistent with both models.  According to Schwartz and Reisberg 
(1991), the rate of learning in classical conditioning is inversely proportional to the time between the conditioned 
stimulus (a signal, such as a dog hearing a bell) and the unconditioned stimulus (the dog gets meat, causing it to learn 
to salivate when it hears the bell).  Also, the rate of learning in reinforcement conditioning is inversely proportional 
to the time between the behavior being taught (response) and the reward or punishment.  In both cases, the 
significance of the first event (signal or response) is in inverse proportion to its age.  These results suggests that this 
property holds in many types of data that is important to our survival, or else our brains would not have evolved this 
way. 
 
One problem with all temporal models is that they give incorrect results when the data really is stationary and 
independent, such as a random source.  The more we weight the model in favor of the most recent events, the smaller 
the sample from which to estimate the probability, and the less accurate the result.  For instance, an inverse reaction 
model can never give a probability between 1/3 and 2/3, even if the true probability is 1/2. 
 
Without knowing the answer, PAQ1 uses an ad-hoc solution.  It is temporal in that it favors recent events, although 
for five or fewer events it is equivalent to a stationary model.  It also weights the model in favor of long runs of zeros 
or ones, which indicate that the estimate p(1) is highly reliable.  The rule is: 
 
              If the training bit is y (0 or 1) then increment cy (c0 or c1).                                                                   (3) 
              If c1-y > 2, then set c1-y = c1-y / 2 + 1 (rounding down if odd). 
 
Table 3 shows the state c0 and c1 on input 00000001111, and output p(1) when combined with a bland model. 



 

 

 
      Input       c0    c1    p(1)+bland  weight 
      0000000     7     0     1/9 = 0.11  10 
      00000001    4     1     2/7 = 0.28  9 
      000000011   3     2     3/7 = 0.43  7 
      0000000111  2     3     4/7 = 0.57  7 
      00000001111 2     4     5/8 = 0.62  8 
 
Table 3.  Predictor state and output for the training sequence 00000001111 
 
This rule has the property that when the outcome is highly certain, when p(0) or p(1) is near 1, the weight is 
increased, roughly in proportion to 1/p(0)p(1).  This is because the only way for c to become large is to have a long 
run of zeros or ones. 
 
We use a compromise between a stationary and inverse temporal model because we do not know a-priori whether 
the data is stationary or not.  On random data, which is stationary, rule (3) expands the data by about 6.6%.  We 
could reduce the expansion by biasing the model more toward a stationary one, for example: 
 
              If the training bit is y (0 or 1) then increment cy                                                                                   (5) 
              If c1-y > 4 then c1-y = 3c1-y /4 + 1 
 
But in practice, this hurts compression on most real data. 
 
PPM models normally use a 256 symbol alphabet.  They generally use the longest context for which at least one 
match can be found in the input, up to some maximum (usually about n = 5).  However, this was found to give poor 
compression using a binary alphabet, probably because information from the lower order contexts is never used.  
Instead, PAQ1 combines all eight n-gram models (for n = 1 to 8) with weight n2.  If we make some inverse temporal 
assumptions about the data, then n2 is the predictive value of the context divided by its frequency.  The predictive 
value is n because the event of a mismatch between the current and matched context last occurred n characters ago, 
so the next character should mismatch with probability 1/n.  The frequency of the context is proportional to 1/n 
because if the probability of a mismatch is 1/n then the expected length of the match is about 2n.  If half of all 
matches of length n match for 2n symbols, then frequency is inversely proportional to length.  A number of other 
weightings were tried (e.g. 1, n, n3, 2n, hand tuning for each n, etc.) and n2 gives the best compression on most files. 
 
To conserve memory, PAQ1 represents the counts c0 and c1 using a single 8-bit state.  This is possible because both 
counts cannot be large at the same time, and because large counts can be approximated without significant loss of 
compression.  The counts 0 through 10 are represented exactly.  The other possible values are spaced further apart as 
they get larger: 12, 14, 16, 20, 24, 28, 32, 48, 64, 96, 128, 256, and 512.  When a large count needs to be 
incremented from a to b where b - a > 1, then the increment is implemented by setting the count to b with probability 
1/(b - a).  This representation was found to compress only 0.05% worse on typical data than using an exact 
representation.  A pseudo-random number generator (based on the recurrence ri = ri-24 XOR ri-55 and a fixed seed) is 
used to ensure platform independence. 
 
PAQ1 stores the counts for 223 (8M) contexts in a 16 MB hash table.  Each table element is two bytes: one byte for 
the counter state, and one byte for a hash checksum to detect collisions.  The context is hashed to a 32-bit value, in 
which 23 bits are used to index the hash table and 8 bits are used as a checksum.  Collisions are resolved by trying 3 
successive locations to find a matching checksum or unused element (c = c0 + c1 = 0), and if none are found, then the 
element with the lowest total count (n) is replaced.  Using an 8-bit checksum means that collision detections are 
missed with probability 1/256, but this was found to have a negligible effect on compression. 
 

4.  The String Matching Model 
 
We could expand the n-gram model to higher n, but this wastes memory because we need to store bit counts for long 
contexts, most of which may never reoccur.  For each byte of input, we need to add 8 hash table entries, or 16 bytes 
total.  Instead we could store the input in a buffer, and search for matching contexts and compute the bit counts on 



 

 

the fly.  Because long matching contexts are highly predictive and likely to agree with each other, it is suff icient to 
find just one match (the most recent) and increase the weight with the assumption that there may be others.  PAQ1 
uses a weight of 3n2 (values of 2n2 to 4n2 work well ) for a match of n bytes. 
 
PAQ1 uses a rotating 4 MB (222 character) buffer and an index of 1M (220) 3-byte pointers indexed by a hash of the 
last 8 bytes with no colli sion resolution.  If a match is found, PAQ1 continues to use it until an unmatched bit is 
found.  Otherwise the current context is compared with the location pointed to by the index to look for a match.  The 
index is updated after each character is read.  The total size of the model is 7 MB. 
 

5.  The Word Bigram Model 
 
Teahan and Cleary (1997) and Jiang and Jones (1992) note that compression of English text improves when the 
symbol alphabet is taken to be whole words rather than letters.  PAQ1 uses two word n-gram models for n = 1 and 2.  
A word is defined as a sequence one or more letters (a-z) up to 8 letters long (truncating the front if longer), and case 
insensitive.  For the unigram model, the context is a hash of the most recent whole or partial word, the previous byte 
(whether or not it is alphabetic, and case sensitive), and the 0 to 7 bits of the current byte read so far.  The weight is 
(n0 + 1)2 where n0 is the length of the word.  The bigram model also includes the previous word, skipping any 
characters in between.   Its weight is (n1 + n0 + 2)2 where n1 is the length of the previous word.  For example, in (1), 
the unigram context of the final character is ca (with 4 matches and weight 9) and the bigram context is cat, ca (with 
no matches and weight 49).  The weights are approximately the same as the n-gram model when the spaces between 
words are included. 
 
The bit counts associated with each context are stored in a hash table of 222 (4M) counter pairs as in the 
nonstationary n-gram model, for a total size of 8 MB. 
 

6.  The Fixed Length Record Model 
 
Many types of data are organized into fixed length records, such as databases, tables, audio, and raster scanned 
images.  We can think of such data as having rows and columns.  To predict the next bit, we look at the sequence of 
bits in the column above it, and optionally at the bits preceding it in the current row as context. 
 
PAQ1 looks for evidence of fixed length records (rows), indicated by an 8 bit pattern (not necessarily on a byte 
boundary) that repeats r = 4 or more times at equally spaced intervals.  If it finds such a pattern with row length k ≥ 9 
bits (not necessarily on a byte boundary), then the following two contexts are modeled: a zero order context 
consisting only of the column number, and an 8-bit context plus the column number.  Their weights are 4 and 16 
respectively.  The weights were determined in an ad-hoc manner, but in keeping with the general principle that 
longer or less frequent contexts should receive more weight. 
 
To detect the end of the table, PAQ1 sets a timer to rk (rows times columns) when a table is detected, which expires 
after rk bits are read with no further detection.  It is possible that another table may be detected before the first 
expires.  If the new table has a higher value of rk than the current value, then the new values of r and k take effect. 
 
For example, suppose the input is: 
 
      $ 3.98\n 
      $14.75\n 
      $ 0.49\n 
      $21.99\n 
 
where \n is the linefeed character.  The model records for each 8 bit sequence such as “$” , “ .” , or “ \n” the position of 
the last occurrence, the interval k to the occurrence before that, and the number of times r in a row that the interval 
was the same.  In this example, r = 4 and k = 56 bits for each of these three patterns.  This is suff icient to establish a 
cycle length of k good for the next rk = 448 bits (4 lines) of input unless a higher rk is seen in the meantime. 
 
The next bit to predict is the first bit of the next line, right under the “$” .  For the weight-4 model, the context is 



 

 

simply the bit position in the file mod k = 56.  In this context, the bit counts c0 and c1 come from the first bit of the 
“$” in the columns above.  Since the first bit of “$” is 0, we have c0 = 4, c1 = 0 for p(1) = 0 with confidence 16.  For 
the weight-16 model, the context is  a hash of “ \n” and the bit position mod 56.  Again, this occurs 4 times, so c0 = 4, 
c1 =0, for p(1) = 0 with confidence 64.  We need both contexts because (for example), only the first context is useful 
for predicting the decimal point character. 
 
The zero bit context is stored in a table of counters (as in the nonstationary n-gram and word models) of size 212 
(2K).  The 8-bit contexts are stored in a hash table of 215 (32K) entries, for a total size of 68K bytes. 
 

7.  PAQ1 Performance 
 
PAQ1 was tested against popular and top ranked compressors on the Calgary corpus, a widely used data 
compression benchmark, and on the Reuters-21578 corpus.  Three tests were performed.  In the first test, the 
programs compressed the Calgary corpus files separately into a single “solid” archive (allowing compression across 
files, if supported), or 14 separate files if the program does not support archiving.  The total size of the compressed 
files is reported.  In the second test, the 14 files of the Calgary corpus were concatenated (alphabetically by file 
name) into a single file of size 3,141,622 bytes.  In the third test, the 22 files of the Reuters-21578 collection (Lewis, 
1997) were concatenated (in numerical order) into a single file of size 28,329,337 bytes.  This corpus consists of 
21,578 English news articles in SGML format.  The tests were performed on a 750 MHz Duron with 128 KB L2 
cache and 256 MB memory under Windows Me.  Run times (in seconds) are for compression for the first test only. 
 
PAQ1 was compared with the top 5 programs ranked by ACT, the top 3 ranked by Ratushnyak, and with the winner 
of the Calgary Corpus Challenge (Broukhis, 2001).  For each program, options were selected for maximum 
compression within 64 MB of memory according to the documentation for that program.  In some cases, maximum 
compression depends on the data being compressed, which requires experimentation with different combinations of 
options.  When the best options differ for different input files, all combinations used are reported. 
 
In the Calgary challenge, the top program is an unnamed submission (which we call DEC) made by Maxim Smirnov 
on Aug. 14, 2001 for a small cash prize.  The challenge requires only the submission of the compressed corpus and a 
decompression program (that must run within 24 hours on a Windows PC with 64 MB memory), which is evaluated 
by its combined size after the program and data is compressed by an archiver from a list supplied by Broukhis.  The 
reason that the decompression program itself is included is because the rules allow part or all of the compressed data 
to be included in the program.  The challenge has two parts, one program to extract the entire archive (solid), and 
one to decompress files read from standard input (split archive).  The submitter must demonstrate general purpose 
compression by compressing an arbitrary file of 0.5 to 1 MB supplied by the challenge to within 10% of GZIP and 
decompressing it with the split version of the submitted program.  Details of DEC are not available, but Smirnov is 
also the author of PPMN (Smirnov 2002).  PPMN details are not available either, but its options indicate it is an 
order-9 PPM encoder that performs file analysis to automatically select optimizations for text, run length encoding, 
“e8 transform”, and “ interleaved coding” .  The e8 transform is an optimization for DOS/Windows .EXE files in 
which relative jump/call addresses are translated to absolute addresses. 
 
The test results are shown in Table 1, along with COMPRESS, PKZIP, and GZIP.  In the table, the type is LZ (77 or 
78), PPMD, PPMZ, BWT (Burrows-Wheeler), AC (associative coding), or NS (nonstationary n-gram). -s indicates a 
solid archive (compression across files).  MB is the memory usage in megabytes where known.  Time is seconds to 
compress the 14 files of the Calgary corpus (decompress for DEC because no compressor is available).   Sizes are 
for the compressed file or files after compressing the Calgary corpus as 14 files or concatenated into a single file, and 
to compress the concatenated Reuters-21578 corpus.  The meanings of the options are as follows: 
 

� GZIP -9: maximum compression 
� ACB u: maximum compression. 
� BOA -m15 -s: 15 MB memory (maximum), solid archive. 
� PPMD/PPMONSTR e -m64 -o8/16/128: encode,  64 MB memory, order 8/16/128.  -o1: order 64 context length 

for var. H.  Note: lower orders use less memory, thus give better compression for Reuters. 
� SBC c -m3 -b16: compress, maximum compression (adds 12 MB memory), 16*512K BWT block size (8 MB 



 

 

blocks compressed independently, memory usage is 6 times block size). 
� RK -mx3 -M64 -ft: maximum compression, 64 MB memory, filter for text (overriding automatic detection). 
� PPMN e -O9 -M:50 -MT1: encode, PPM order 9 (maximum), 50 MB memory (maximum), text mode 1 (best 

compression) 
 
 
 
Program     Options       Type   MB  14 files   Time   Concat.    Reuters 
-------     -------       ----   --  ---------  ------ ---------  ---------- 
Original size                        3,141,622         3,141,622  28,329,337 
COMPRESS                  LZ78   <1  1,272,772    1.5  1,318,269  10,406,527 
PKZIP 2.04e               LZ     0.4 1,032,290    1.5  1,033,217   8,334,457 
GZIP 1.2.4  -9            LZ77   <1  1,017,624    2    1,021,863   8,114,057 
ACB         u             AC-s  <16    766,322  110      769,363   4,567,213 
BOA 0.58b   -m15 -s       PPMZ-s 15    747,749   44      769,196   4,326,917 
PPMD H      e -m64 -o16   PPMII  64    744,057    5      759,674   4,286,536 
            e -m64 -o8    PPMII  64    746,316    5      762,843   3,850,243 
SBC 0.910   c -m3 -b16    BWT    65    740,161    4.7    819,027   4,197,501 
PPMONSTR H  e -m64 -o1    PPMII  64    719,922   13      736,899   4,465,502 
            e -m64 -o8    PPMII  64    726,768   11      744,960   3,917,444 
RK 1.02 b5  -mx3 -M64     PPMZ-s 64    707,144   44      750,744   4,404,256 
            -mx3 -M64 -ft PPMZ-s 64    717,384   44      750,744   4,207,960 
RK 1.04     -mx3 -M64     PPMZ-s 64    712,188   36      755,872   3,978,800 
            -mx3 -M64 -ft PPMZ-s 64    730,100   39      755,876   3,857,780 
PPMN 1.00b1-M:50 -MT1 -O9 PPM    50    716,297   23      748,588   3,934,032 
PPMONSTR Ipre -m64 -o128  PPMII  64    696,647   35      703,320   4,514,279 
  (3/3/02)    -m64 -o8    PPMII  64    704,914   30      707,581   3,781,287 
DEC-SPLIT                 ?     <64    685,341  (27 to decompress) 
DEC-SOLID                 ?-s   <64    680,558  (27 to decompress) 
PAQ1                      NS-s   48    716,704   68.1    716,240   4,078,101 
 
Table 4.  Compression results for PAQ1 and popular or top ranked compression programs on the Calgary corpus (14 
files or concatenated) and the Reuters-21578 corpus. 
 
The best compression on the Calgary corpus is 680,558 bytes by the solid version of DEC as a HA (Hirvola, 1993) 
archive.  The archive decompresses to 11 data files with a total size of 672,739 bytes, plus the 24,576 byte 
decompression program, DEC.EXE.  It is possible to compress DEC.EXE to 7056 bytes with PAQ1 (better than HA, 
RK or PPMONSTR) which further reduces the overall size to 679,795 bytes, or 1.731 bits per character (bpc).  The 
split version is a 685,341 byte HA archive containing 14 compressed files with a total size of 677,624 bytes, plus a 
24,576 byte executable, compressible to 6892 bytes by PAQ1 for a total size of 684,516 bytes.  No compression 
program is available, nor are any details of the algorithm used.   
 
Among general purpose programs, the best on the Calgary corpus is PPMONSTR var. Ipre dated 3/3/02, which is 
currently undergoing development and not yet released as of this writing.  Among released compressors,  RK 1.02b5 
with the -mx3 (maximum compression) option, at 707,144 bytes.  Only PPMONSTR Ipre, RK (1.02b and 1.04) and 
PPMN beat PAQ1, which compresses to 716,704 bytes, or 2.9% larger than the 696,647 bytes for PPMONSTR Ipre.  
RK and PAQ1 both produce solid archives, using statistics from other files.  However, when the files are 
concatenated, PAQ1 has the best compression of all programs except PPMONSTR Ipre.  Concatenation hurts 
compression in all programs except PAQ1, which compresses to a slightly smaller 716,240 bytes (1.824 bpc).  PAQ1 
concatenates the input files internally. so the slight difference is due to a smaller header. 
 
On the Reuters corpus, RK, PPMD, and PPMONSTR beat PAQ1.  The smallest is 3,781,287 bytes (1.068 bpc) by 
order-8 PPMONSTR Ipre vs. 4,078,101 bytes for PAQ1 (7.8% larger). 
 
7.1.  Calgary Corpus Detailed Results 
 
Table 5 shows compression on individual files in the Calgary corpus for the top compressors, RK 1.02, PAQ1, 



 

 

PPMONSTR H, and DEC-SPLIT, with options set for maximum compression and 64 MB memory as in Table 4.  
For RK and PAQ1 sizes are shown for both solid and split archives.  For solid archives, sizes shown are as reported 
by the programs and do not include the archive header.  DEC also produces solid archives, but this information was 
not available.  RK analyzes the input files and reorders them prior to producing a solid archive.  For consistency, the 
same ordering was used for PAQ1.  The table also tests the effect of reordering in RK order on the concatenated 
corpus vs. concatenation in alphabetical order by file name as in Table 4. 
 
 
 
 
        Original     Solid archive              As separate files 
File        Size   RK 1.02   PAQ1      RK 1.02   PAQ1  PPMONSTR DEC-SPLIT 
------    ------   -------  ------     -------  ------ -------  ------ 
PAPER2     82199     22111   22323       22204   22352   21842   21147 
PAPER1     53161     13085   12783       14748   14521   14258   14020 
BOOK1     768771    201950  206539      202424  209195  205165  195338 
BOOK2     610856    139591  132151      138624  137672  136077  132832 
OBJ1       21504      9397   10027        9488    9463    9422    9092 
GEO       102400     47960   52244       47740   51329   53236   46879 
OBJ2      246814     63754   66416       61932   64151   65131   63595 
PIC       513216     30595   46975       30684   45973   45157   24217 
BIB       111261     24146   23011       24236   24293   23334   23471 
PROGL      71646     13692   12661       13260   12708   12470   12688 
PROGC      39611     11614   10571       11456   10824   10721   10737 
PROGP      49379     10207    9048        9252    8725    8609    8944 
TRANS      93695     14273   13465       14696   14146   13747   14360 
NEWS      377109    104435   97917      105124  102078  100771  100304 
------    ------   -------  ------      ------  ------  ------  ------ 
Total    3141622    706810  716386      705860  727430  719940  677624 
Concatenated RK     750500  716159 
Concatenated alpha  750740  716240 
 
Table 5.  Calgary corpus results on individual files for top compressors.  Best results are shown in bold. 
 
The most notable differences between compressors is that RK and DEC outperforms PAQ1 and PPMONSTR on the 
binary files OBJ2 and GEO, and especially PIC.  OBJ2 is a Macintosh executable organized into 16-bit words.  GEO 
contains seismic data organized into 32-bit words.  PIC is a black and white image of a page in a textbook (text in 
French and a line diagram) at 200 dots per inch, organized as a 1728 by 2376 bitmap.  RK has a delta filter which 
replaces each 8, 16, or 32 bit word with the difference from the previous word.  On text files, DEC is best, followed 
by PPMONSTR, PAQ1 and RK. 
 
It is interesting to note that producing a solid archive did not help RK at all!  The solid archive is 0.1% larger than 
the 14 separately compressed files.  On the other hand, the solid PAQ1 archive is 1.5% smaller.  Nor does the file 
order make much difference.  When the files are concatenated in RK order vs. alphabetical order, the output is only 
0.03% smaller for RK and 0.01% smaller for PAQ1.  This seems rather insignificant when we consider that the loss 
of file boundary information expands RK output by 6.2% and PPMONSTR by 2.3%, but does not hurt PAQ1 at all.  
Using solid archives, PAQ1 compresses better than RK for 8 of 14 files and better than PPMONSTR H for 7 of 14 
files. 
 
7.2  Confusion Tests 
 
The next set of experiments tests for specialized models in the top compressors by modifying some of the files in 
ways that should confuse these models without changing overall entropy.  The files PIC, GEO, and BOOK1 from the 
Calgary corpus were used, since it is possible that the top compression programs might be tuned to this widely used 
benchmark, and these files are representative of the different data types in this corpus. 
 



 

 

The first test was on PIC, a 1728 x 2376 image with one bit per pixel.  The image was cropped by removing 8 pixels 
from the right edge, i.e. removing every 216’ th byte.  All of the removed bytes are 0.  PAQ1, PPMONSTR (-o1, 
order 64), and PPMN all compress either file to about 45 KB, but this trivial change caused the compression by RK 
1.02 to go from 30K to 48K.  This suggests that RK has a model specific to PIC.  (Malcolm Talyor later confirmed 
that RK transposes the rows and column to get better compression). 
 
The second test was on GEO, which contains seismic data in 32-bit records.  Most of the records consist of large 
blocks where every record has the form (in binary) 
 
              x10000xx xxxxxxxx xxxxxx00 00000000 
 
In other words, the first hex digit is 4 or C, and the last byte is 0.  The x’s indicate apparently random bits, although 
there is some correlation between adjacent records in the leftmost bits.  An n-gram model would miss this because of 
the intervening random data.  The experiment was to remove this obstacle by de-interleaving the file.  Every fourth 
byte was sampled to produce four smaller files, which were concatenated.  The result was that the first 1/4 of the file 
contains bytes of the form x10000xx, and the last 1/4 contains all zeros.  This improves compression by 
PPMONSTR from 53 KB to 49 KB, and similarly in PPMN, but hurts RK, which goes from 47 KB to 49 KB.  The 
effect in PAQ1 is to render the fixed record model useless, but this is offset by bringing the correlated bytes together 
as in PPMONSTR, so the compression remains about 51 KB. 
 
The third experiment was to perform a simple substitution cipher on BOOK1 to test for models specific to ASCII 
text.  The cipher is to multiply each byte by 3 (mod 256).  For instance, a (97) became # (3 x 97 = 35 (mod 256)).  
This hurt all three compressors.  PPMONSTR was affected only slightly, going from 205 KB to 207 KB.  RK went 
from 202 KB to 213 KB, and PAQ1 went from 209 KB to 219 KB.  This suggests that the word model in PAQ1 
helps compression of English text about as much as the text filter (-ft) in RK.  PPMN, which had the best 
compression, suffered the most, going from 197 KB to 212 KB. 
 
File              Original   PAQ1    RK 1.02 PPMONSTR   PPMN   DEC-split 
-----------       --------  -------  -------  ------   -------   ------ 
PIC                513,216   45,973   30,684   45,157   46,583   24,217 
PIC cropped        510,840   45,953   48,252   45,200   46,596 
GEO                102,400   51,329   47,740   53,236   52,272   46,879 
GEO de-interleaved 102,400   51,259   49,844   49,638   49,726 
BOOK1              768,771  209,167  202,428  205,165  197,181  195,338 
BOOK1 ciphered     768,771  219,503  213,548  207,853  212,792 
 
Table 6.  Model confusion test results on top compressors.  DEC-split i s shown for reference. 
 
It should be noted that if we substitute the cropped PIC into the Calgary corpus results in table 4, then the top five 
compressors from best to worst becomes DEC, PPMN, PAQ1, PPMONSTR, and RK.  Although RK and 
PPMONSTR outperform PAQ1 on most files, PAQ1 has the advantage that it can make better use of cross file 
statistics in producing a solid archive. 
 

8.  The Compression-Memory Tradeoff 
 
From table 4 we can see that the best compression programs tend to use the most memory.  The modular design of 
PAQ1 allows us to easily combine models and adjust the memory usage by each one to optimize compression for 
some data set.  PAQ1 combines two very general models, the n-gram model and long string matching model, with 
two specialized models, one for English text and one for fixed length records, common in binary data.   
 
Table 7 shows the effects of removing models or decreasing their available memory on compression of the Calgary 
corpus.  For the n-gram and word models, the memory was adjusted by changing the size of the hash table.  The 
other models were simply added or removed.  The word model generally improves the compression of text files, 
while expanding other files very slightly.  The fixed length record model improves compression mostly for GEO, and 
to a lesser extent PIC and OBJ2, while expanding other files very slightly.  Even without the two specialized models, 



 

 

PAQ1 still achieves very good compression, 731 KB on the concatenated Calgary corpus, compared to 736 KB for 
the next best compressor, PPMONSTR. 
 
 
 
n-gram  string  word  fixed      Size       Time 
------  ------  ----  -----      -------    ---- 
 -      -       -     -        3,141,622 
 1 MB   -       -     -          843,819    46.3 
 8 MB   -       -     -          768,463    45.9 
16 MB   -       -     -          758,456    45.6 
32 MB   -       -     -          751,734    45.3 
32 MB   7 MB    -     -          731,637    48.5 
32 MB   7 MB    8 MB  -          723,092    62.1 
16 MB   7 MB    8 MB  68 KB      720,310    71.2 
32 MB   7 MB    4 MB  68 KB      717,766    68.0 
32 MB   7 MB    8 MB  68 KB      716,704    68.1 (PAQ1) 
 
Table 7.  The effects of removing model components or reducing memory on compression of the concatenated 
Calgary corpus. 
 

9.  Conclusion 
 
PAQ1 demonstrates that nonstationary bit-level modeling is comparable in speed, memory, and compression to the 
best PPM and BWT implementations.  All of these algorithms exploit a very general (but not universal) redundancy 
found in many types of data -- that some n-grams are more common than others.  What they don’ t exploit -- and 
PAQ1 does -- is that these common n-grams tend to cluster together.  This comes at a cost, because optimizing any 
compression algorithm for one type of data hurts compression for other types.  PAQ1 gets very good compression on 
mixed data, but at the cost of expanding homogeneous data, including random data.  It is as if the model keeps 
looking for patterns where none exist. 
 
PAQ1 uses a nonstationary n-gram model, which is a compromise between a stationary model where all events are 
equally significant, and an inverse temporal model where the significance of an event is inversely proportional to the 
time since it occurred.  The latter is motivated by studies of learning in animals.  The models are weighted by n2, 
which we argued is equal to the predictive power of an n-gram divided by its frequency if we assume that the n-
grams themselves are generated by an inverse temporal process.  Finally, the models are weighted by 1/p(0)p(1) 
because probabiliti es near 0 or 1 are more useful than probabiliti es near 1/2. 
 
The modular design of PAQ1 makes it easy to add specialized models for certain types of data, such as ASCII text or 
fixed length records.  We found experimental evidence that RK contains similar models, as well as one for images of 
exactly the same width as PIC from the Calgary corpus.  We could add more models to improve compression on 
standard benchmarks even further, but there is littl e point in doing so.  The DEC program ill ustrates the extent to 
which this approach can be taken. 
 
I believe that advances in compression will come in two areas.  First is the addition of more memory.  Second, it will 
come from a better understanding of specialized types of data.  For data that is meaningful to humans, such as text or 
movies, the problem is closely related to artificial intelli gence.  In lossy multimedia compression, the problem is to 
discard what we cannot see or hear, and keep what we can, which implies a deep understanding of the process of 
human perception.  Lossless text compression is a problem in natural language processing.  To see this, imagine the 
problem of compressing the following hypothetical dialog from the Turing test for AI (Turing, 1950): 
 
Q: Please write me a sonnet on the subject of the Forth Bridge. 
A: Count me out on this one. I never could write poetry. 
Q: Add 34957 to 70764. 
A: (Pause about 30 seconds and then give as answer) 105621. 
Q: Do you play chess? 



 

 

A: Yes. 
Q: I have K at my K1, and no other pieces.  You have only K at K6 and R at R1.  
It is your move.  What do you play? 
A: (After a pause of 15 seconds) R-R8 mate. 
 
Since arithmetic encoding is known to be optimal, compression quality depends entirely on knowing the probabilit y 
p(s) for any given input string s whatever the source, for example, human communication.  This implies that for any 
given question q and answer a, we could calculate p(a|q) = p(qa)/p(q).  Knowing p(s), we could therefore generate 
answers as above with distribution p(a|q).  Since humans also produce answers with distribution p(a|q) (by our 
original assumption about the source), the program’s answers would be indistinguishable from that of a human, and 
the program would pass the Turing test. 
 
Of course we have a long way to go before data compression programs can learn from a corpus of text to play chess 
or simulate human errors in arithmetic, but there are some things we can do.  For instance, Rosenfeld (1996) has 
demonstrated improved compression (actually word perplexity, a function of entropy) in models that learn semantic 
associations, such as sonnet and poetry, based on their close proximity in running text, so that the occurrence of 
either word predicts the other.  (Bellegarda et. al., 1996) has gone further by exploiting the transitive property of 
semantics (using a process called latent semantic analysis, essentially a 3-layer linear neural network) to learn such 
associations even when the words do not appear near each other, but both appear near other words such as rhyme. 
 
PAQ1’s word bigram model uses a fixed lexical model to find words, which it defines as a sequence of letters from a 
to z.  This would not work in foreign languages that use extended character sets, or in languages that lack spaces 
between words, such as Chinese.  The problem also occurs in Finnish verbs, German nouns, and with English 
suff ixes such as -s, -ing, -ed, etc.  However, Hutchens and Alder (1997) demonstrated that lexical knowledge is 
learnable from an n-gram model: the conditional entropy of characters outside the boundary of a word is higher than 
for characters within the boundary.  Essentially, this is because words have a higher frequency than non-words, and 
because words cannot overlap. 
 
PAQ1 source code was released on Jan. 7, 2002 under the GNU general public license, and is available at 
http://cs.fit.edu/~mmahoney/compression/.  Future versions will use incompatible archive formats, 
thus they will have different names: PAQ2, PAQ3, etc.  I anticipate that future versions will i ncorporate some of the 
language modeling ideas discussed here.  One of my goals is to bridge the “ lexical boundary” between the word-
level semantic and syntactic models used by the statistical NLP community (primarily speech recognition) and the n-
gram character models of the data compression community. 
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