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Abstract
We formally define recursively self improving programs and show that such programs exist, but that 
their algorithmic complexity cannot grow faster than O(log n) given fixed goals.

Background
Vinge [1] predicted that if humans could produce artificial intelligence (AI) systems with greater than 
human intelligence, then so could those systems, only faster. The resulting positive feedback cycle 
would result in an intelligence explosion or singularity. The Singularity Institute for Artificial 
Intelligence [2] is investigating the threat of runaway AI, but the problem is poorly understood; lacking 
any precedent. Of central importance is an understanding of the limits of recursive self improvement 
(RSI). If RSI is possible, then it is critical that the initial goals of the first iteration of agents (seed AI) 
are friendly to humans and that the goals not drift through successive iterations, assuming we cannot 
control the goals of subsequent generations appearing in rapid succession. This is an extremely difficult 
problem in itself, because friendliness is not well defined, although attempts have been made [3]. On 
the other hand, if RSI is not possible, then we are possibly left with an evolutionary process in which 
self modifying and reproducing agents compete for computing resources with the most successful of 
these displacing the others. Any goal contrary to rapid reproduction would be unstable. The 
evolutionary process might be greatly accelerated because it might be based on software (such as self 
modifying internet worms) or self replicating nanotechnology (gray goo [4]) rather than on DNA.

To talk about RSI, we must first define it. Generally, we wish to improve intelligence, which is itself 
hard to define. Turing proposed an imitation game [5] as a test for intelligence: the ability of a machine 
to fool a human into believing it was another human is sufficient (but not necessary) evidence of 
intelligence. However, the Turing test is not an appropriate test for RSI because it does not describe a 
test for superhuman intelligence. This seems to be a general problem. We can detect an IQ of 200 in 
children, but there is no equivalent test for adults. If Alice is smarter than Bob, then how is Bob to test 
Alice's intelligence? If Alice gives an answer that Bob believes is wrong, then who are we to believe?

Legg and Hutter [6] surveyed a number of common definitions of intelligence and offered a formal 
definition of universal intelligence which does not depend on human characteristics. An agent's 
intelligence is defined as the expected reward in environments modeled by programs generated by coin 
flips in the AIXI model. In the AIXI model [7] an agent and environment are modeled as a pair of 
interacting Turing machines in which at each step the agent sends a symbol to the (unknown) 
environment and the environment sends a symbol plus a reward signal to the agent. The goal of the 
agent is to accumulate the greatest possible reward. A formal definition has the advantage of allowing 
mathematical analysis. For example, Hutter proved that the optimal strategy of the agent is to guess at 
each step that the environment is simulated by the shortest program consistent with all of the interaction 
observed so far. This would solve the general intelligence problem once and for all (for systems that fit 
the model), except for the fact that the strategy is not computable.

Legg and Hutter's universal intelligence cannot be measured precisely because it would require testing 
over an infinite number of environments, although it could be approximated by random sampling. 



Wang [8] offers a different definition (also after a survey of common meanings): the ability to adapt to 
an environment given insufficient knowledge and resources. AIXI has insufficient knowledge (none 
initially) but unlimited space and time. However, Hutter also proved that in the case of space bound l 
and time bound t, that there is an optimal and computable (although intractable) strategy called AIXItl 

that runs in O(t 2l) time [7].

What does self-improvement mean?
We must define what it means for a program to have a goal and to improve with respect to achieving 
that goal. We sometimes speak of a search procedure or optimization process of having a goal of 
solving a problem, although this is really the goal of the programmer. However, it is still a useful 
metaphor for understanding some systems. For example, we can think of a linear regression algorithm 
having the goal of fitting a line to a set of points with minimum error, or a thermostat having the goal of 
keeping the room at a certain temperature, or a chess program that wants to win the game. We can 
compare systems according to how well or how quickly they achieve some goal.

We wonder if it is possible for a system to improve itself, for example, for a program to rewrite its own 
source code to learn faster, or to store more knowledge in a fixed space, without being given any 
information except its own source code. This is a different problem than learning, where a program gets 
better at achieving goals as it receives input. An example of a self improving program would be a 
program that gets better at playing chess by playing games against itself. Another example would be a 
program with the goal of finding large prime numbers within t steps given t. The program might 
improve itself by varying its source code and testing whether the changes find larger primes for various 
t.

Intelligent agents are normally modeled as interactive processes. However, we may use a batch model 
in which a Turing machine receives all of its input at the beginning, because we are studying self 
improvement, not learning. (We may, of course, have a goal of learning faster, but it is still possible for 
a non interactive program to experiment on itself using tests that measure rate of learning).

In the following sections, we formally define what it means for a program to have a goal and to 
improve with respect to this goal. Improvement is with respect to achieving a goal within a time bound 
t, which also imposes a space restriction, since it limits how much memory can be accessed within time 
t. We show that there exists infinite sequences of programs that improve in the sense of producing 
better answers within time bounds, and give an example of a program that generates the next program 
in the sequence. Finally, we show that these sequences are severely restricted in their ability to gain 
useful knowledge.

Goals
We define a goal as a function G: N → R mapping natural numbers (or equivalently, strings, or 
elements of some other countable set) to real numbers. For example, the function PRIME(x) = {x if x is 
prime, else 0} represents the goal of finding large prime numbers. G is sometimes called a utility  
function.

Fix a universal Turing machine L. Define P(t) to mean the positive natural number encoded by the 
output of program P with input t running on L after t time steps, or 0 if P has not halted after t steps. We 
say that P has goal G at time t if and only if there exists t' > t such that G(P(t')) > G(P(t)) and for all t' > 
t, G(P(t') ≥ G(P(t)). In other words, running P longer will eventually produce a better result and never 
produce a worse result afterwards.

Definition: P has goal G if there exists a constant C such that P has goal G for all t > C.



Example 1: let G = PRIME and let P = {3 if t < 100, else 5} complete in 50 steps. Then P has goal 
PRIME for t < 100, but does not have this goal thereafter.

Example 2: let P = {t} complete after t/2 steps. Then P has goal PRIME at time t = 6, but not at t = 7.

Example 3: let P = {n: n is the largest prime number less than t1/3} complete in less than t steps for all t 
> 1000. Then P has goal PRIME (for all t).

If P has goal G, then G(P(t)) is a monotonically increasing function of t with no maximum for t > C. 
More time always helps. We define a goal this way because otherwise once we find a maximum G(P(t)) 
we could not say if P is “trying” to find a higher value. We can only measure results, not intent.

Improvement
Definition: Q improves on P with respect to goal G if and only if all of the following conditions are 
met:

 P has goal G.

 Q has goal G.

 There exists t such that G(Q(t)) > G(P(t)).

 There does not exist t' > t such that G(Q(t')) < G(P(t')).

In other words, at some point Q produces a better result than P in the same amount of time and never 
produces a worse result given more time. The last condition is needed because otherwise it would be 
possible to construct P and Q such that both improve on the other.

Example 4: let Q = {n: n is the largest prime number less than t1/3 + 1} complete in less than t steps for 
all t > 2000. Then Q improves on P from example 3.

Recursive Self Improvement
Define an improving sequence with respect to G as an infinite sequence of programs P1, P2, P3,... such 
that for all i > 0, Pi+1 improves on Pi with respect to goal G.

Example 5: Let G be the identity goal: G(x) = x (the goal of finding big numbers). Let Pn(t) = {t + n} 
complete in less than C + D log tn  steps for some positive constants C and D. Then this is an 
improving sequence with respect to G. It is also computable using binary string representations of 
numbers because addition and output take O(log n) steps for numbers n.

Up to this point, we have considered only programs that output natural numbers. We now consider 
programs that can output other programs. We have previously defined programs P(t) that accept t > 0. 
Without loss of generality, and without changing our previous definitions, we extend our definitions to 
allow the value -1 to be accepted as input, such that P(-1) outputs a (suitably encoded) program.

Definition: P1 is a recursively self improving (RSI) program with respect to G if and only if Pi(-1) = Pi+1 

for all i > 0 and the sequence Pi, i = 1, 2, 3... is an improving sequence with respect to G.

Example 6: Let L to be the C programming language, with input and output expressed as decimal 
strings. Let G be the identity goal. Then define P1(t) as the following program:

char*p="char*p=%c%s%c;"
"main(){"
  "int t,n=%d;"
  "scanf(%c%cd%c,&t);"
  "t>=0"



    "?printf(%c%cd%c,t+n)"
    ":printf(p,34,p,34,n+1,34,37,34,34,37,34);}";
main(){
  int t,n=1;
  scanf("%d",&t);
  t>=0
    ?printf("%d",t+n)
    :printf(p,34,p,34,n+1,34,37,34,34,37,34);}

(34 and 37 are the ASCII codes of  “ and % respectively). Successive iterations P2, P3,... are written on 
one line, but differ functionally from P1 only in that the initialization “n=1” is replaced by “n=2”, 
“n=3”, etc. Strictly speaking, this program is not RSI because the addition will eventually overflow. But 
in principle, RSI programs are possible given unlimited memory to encode arbitrarily large integers.

Bounds on RSI
In example 6, the algorithmic (Kolmogorov) complexity of Pn is O(log n). This is because the program 
has constant complexity except for the encoding of n, which can be expressed in O(log n) digits. In fact, 
this is true in general.
Theorem: Let Pn be the n'th iteration of a recursively self improving program. Then the algorithmic 
complexity of Pn is not greater than O(log n).
Proof: recall that the algorithmic complexity of a string x is the length of the shortest program that 
outputs x. Pn can be output by a program that takes P1 and n as input, sets P = P1 and iterates P ← P(-1) 
n times. The control program and P1 have fixed size which does not depend on n. n can be encoded in 
O(log n) bits.
 
We may conclude that if intelligence is a function of knowledge and computing power, then software 
self modification by itself is not a viable path to self improvement because neither is increased.
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